237 research outputs found

    Experimental Test of Two-way Quantum Key Distribution in Presence of Controlled Noise

    Full text link
    We describe the experimental test of a quantum key distribution performed with a two-way protocol without using entanglement. An individual incoherent eavesdropping is simulated and induces a variable amount of noise on the communication channel. This allows a direct verification of the agreement between theory and practice.Comment: 4 pages, 3 figure

    Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack

    Get PDF
    Quantum key distribution can be performed with practical signal sources such as weak coherent pulses. One example of such a scheme is the Bennett-Brassard protocol that can be implemented via polarization of the signals, or equivalent signals. It turns out that the most powerful tool at the disposition of an eavesdropper is the photon-number splitting attack. We show that this attack can be extended in the relevant parameter regime such as to preserve the Poissonian photon number distribution of the combination of the signal source and the lossy channel.Comment: 4 page

    Delayed commutation in quantum computer networks

    Full text link
    In the same way that classical computer networks connect and enhance the capabilities of classical computers, quantum networks can combine the advantages of quantum information and communications. We propose a non-classical network element, a delayed commutation switch, that can solve the problem of switching time in packet switching networks. With the help of some local ancillary qubits and superdense codes we can route the information after part of it has left the network node.Comment: 4 pages. 4 figures. Preliminar versio

    Practical quantum key distribution: On the security evaluation with inefficient single-photon detectors

    Full text link
    Quantum Key Distribution with the BB84 protocol has been shown to be unconditionally secure even using weak coherent pulses instead of single-photon signals. The distances that can be covered by these methods are limited due to the loss in the quantum channel (e.g. loss in the optical fiber) and in the single-photon counters of the receivers. One can argue that the loss in the detectors cannot be changed by an eavesdropper in order to increase the covered distance. Here we show that the security analysis of this scenario is not as easy as is commonly assumed, since already two-photon processes allow eavesdropping strategies that outperform the known photon-number splitting attack. For this reason there is, so far, no satisfactory security analysis available in the framework of individual attacks.Comment: 11 pages, 6 figures; Abstract and introduction extended, Appendix added, references update

    Estimates for practical quantum cryptography

    Get PDF
    In this article I present a protocol for quantum cryptography which is secure against attacks on individual signals. It is based on the Bennett-Brassard protocol of 1984 (BB84). The security proof is complete as far as the use of single photons as signal states is concerned. Emphasis is given to the practicability of the resulting protocol. For each run of the quantum key distribution the security statement gives the probability of a successful key generation and the probability for an eavesdropper's knowledge, measured as change in Shannon entropy, to be below a specified maximal value.Comment: Authentication scheme corrected. Other improvements of presentatio

    Integrated dopaminergic neuronal model with reduced intracellular processes and inhibitory autoreceptors

    Get PDF
    Dopamine (DA) is an important neurotransmitter for multiple brain functions, and dysfunctions of the dopaminergic system are implicated in neurological and neuropsychiatric disorders. Although the dopaminergic system has been studied at multiple levels, an integrated and efficient computational model that bridges from molecular to neuronal circuit level is still lacking. In this study, the authors aim to develop a realistic yet efficient computational model of a dopaminergic pre‐synaptic terminal. They first systematically perturb the variables/substrates of an established computational model of DA synthesis, release and uptake, and based on their relative dynamical timescales and steady‐state changes, approximate and reduce the model into two versions: one for simulating hourly timescale, and another for millisecond timescale. They show that the original and reduced models exhibit rather similar steady and perturbed states, whereas the reduced models are more computationally efficient and illuminate the underlying key mechanisms. They then incorporate the reduced fast model into a spiking neuronal model that can realistically simulate the spiking behaviour of dopaminergic neurons. In addition, they successfully include autoreceptor‐mediated inhibitory current explicitly in the neuronal model. This integrated computational model provides the first step toward an efficient computational platform for realistic multiscale simulation of dopaminergic systems in in silico neuropharmacology

    Security against individual attacks for realistic quantum key distribution

    Get PDF
    I prove the security of quantum key distribution against individual attacks for realistic signals sources, including weak coherent pulses and downconversion sources. The proof applies to the BB84 protocol with the standard detection scheme (no strong reference pulse). I obtain a formula for the secure bit rate per time slot of an experimental setup which can be used to optimize the performance of existing schemes for the considered scenario.Comment: 10 pages, 4 figure

    Practical free-space quantum key distribution over 1 km

    Full text link
    A working free-space quantum key distribution (QKD) system has been developed and tested over an outdoor optical path of ~1 km at Los Alamos National Laboratory under nighttime conditions. Results show that QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, we examine the feasibility of surface to satellite QKD.Comment: 5 pages, 2 figures, 2 tables. Submitted to Physics Review Letters, May 199

    Quantum Cryptography Based on the Time--Energy Uncertainty Relation

    Get PDF
    A new cryptosystem based on the fundamental time--energy uncertainty relation is proposed. Such a cryptosystem can be implemented with both correlated photon pairs and single photon states.Comment: 5 pages, LaTex, no figure
    • 

    corecore